Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 153: 213563, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487456

RESUMO

Breast cancer is resistant to conventional treatments due to the specific tumour microenvironment, the associated acidic pH and the overexpression of receptors that enhance cells tumorigenicity. Herein, we optimized the synthesis of acidic resorbable calcium carbonate (CaCO3) nanoparticles and the encapsulation of a low molecular weight model molecule (Rhodamine). The addition of ethylene glycol during the synthetic process resulted in a particle size decrease: we obtained homogeneous CaCO3 particles with an average size of 564 nm. Their negative charge enabled the assembly of layer-by-layer (LbL) coatings with surface-exposed hyaluronic acid (HA), a ligand of tumour-associated receptor CD44. The coating decreased Rhodamine release by two-fold compared to uncoated nanoparticles. We demonstrated the effect of nanoparticles on two breast cancer cell lines with different aggressiveness - SK-BR-3 and the more aggressive MDA-MB-231 - and compared them with the normal breast cell line MCF10A. CaCO3 nanoparticles (coated and uncoated) significantly decreased the metabolic activity of the breast cancer cells. The interactions between LbL-coated nanoparticles and cells depended on HA expression on the cell surface: more particles were observed on the surface of MDA-MB-231 cells, which had the thickest endogenous HA coating. We concluded that CaCO3 nanoparticles are potential candidates to carry low molecular weight chemotherapeutics and deliver them to aggressive breast cancer sites with an HA-abundant pericellular matrix.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Carbonato de Cálcio/farmacologia , Carbonato de Cálcio/química , Células MCF-7 , Rodaminas , Nanopartículas/química , Microambiente Tumoral
2.
J Funct Biomater ; 14(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662050

RESUMO

Mussels secrete protein-based byssal threads to tether to rocks, ships, and other organisms underwater. The secreted marine mussel adhesive proteins (MAPs) contain the peculiar amino acid L-3,4-dihydroxyphenylalanine (DOPA), whose catechol group content contributes greatly to their outstanding adhesive properties. Inspired by such mussel bioadhesion, we demonstrate that catechol-modified polysaccharides can be used to obtain adhesive membranes using the compaction of polyelectrolyte complexes (CoPEC) method. It is a simple and versatile approach that uses polyelectrolyte complexes as building blocks that coalesce and dry as membrane constructs simply as a result of sedimentation and mild temperature. We used two natural and biocompatible polymers: chitosan (CHI) as a polycation and hyaluronic acid (HA) as a polyanion. The CoPEC technique also allowed the entrapment of ternary bioactive glass nanoparticles to stimulate mineralization. Moreover, combinations of these polymers modified with catechol groups were made to enhance the adhesive properties of the assembled membranes. Extensive physico-chemical characterization was performed to investigate the successful production of composite CoPEC membranes in terms of surface morphology, wettability, stability, mechanical performance, in vitro bioactivity, and cellular behavior. Considering the promising properties exhibited by the obtained membranes, new adhesives suitable for the regeneration of hard tissues can be envisaged.

3.
Mater Sci Eng C Mater Biol Appl ; 121: 111813, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579457

RESUMO

Extracellular vesicles (EVs) are particles originating from the exfoliation of the cellular membrane. They are involved in cell-to-cell and cell-to-matrix signaling, exchange of bioactive molecules, tumorigenesis and metastasis, among others. To mitigate the limited understanding of EVs transfer phenomena, we developed a simplistic model that mimics EVs and their interactions with cells and the extracellular matrix. The proposed model is a layer by layer (LbL) film built from the polycationic poly-l-lysine (PLL) and the glycosaminoglycan hyaluronic acid (HA) to provide ECM mimicry. Positively charged 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and N1,N1,N14,N14-tetramethyl-N1,N14-ditetradecyltetradecane-1,14-diaminium dibromide (GS14) liposomes were embedded in this construct to act as EVs analogs. To simulate EVs carrying substances, Nile Red was loaded as a model of lipophilic cargo molecules. The integration of each component was followed by quartz crystal microbalance measurements, which confirmed the immobilization of intact liposomes on the underlying (PLL/HA)3 soft film. The release of Nile Red from liposomes either embedded in the LbL construct or exposed at its surface revealed a fast first order release. This system was validated as a model for EV/cell interactions by incubation with breast cancer cells MDA-MB-231. We observed higher internalization for embedded liposomes when compared with surface-exposed ones, showcasing that the ECM mimic layers do not constitute a barrier to liposome/cell interactions but favor them.


Assuntos
Vesículas Extracelulares , Lipossomos , Ácido Hialurônico , Técnicas de Microbalança de Cristal de Quartzo
4.
Acta Biomater ; 87: 108-117, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30665018

RESUMO

We describe biomimetic adhesives inspired by the marine glues fabricated by the sandcastle worm. The formation of stable polyelectrolyte complexes between poly-L-lysine (PLL) and glycosaminoglycans (GAGs) with different sulfation degree - heparin (HEP), chondroitin sulfate (CS) and hyaluronic acid (HA) - is optimized by zeta-potential titrations. These PLL/GAG complexes are transformed into compact polyelectrolyte complexes (coPECs) with controlled water contents and densities via baroplastic processing. Rotational shear tests demonstrate that coPECs containing sulfated GAGs (HEP or CS) have solid-like properties, whereas HA-based complexes form highly hydrated viscous-like networks. The adhesiveness of the generated coPECs (normalized lap shear strength) is tested in dry and wet states using polystyrene and rabbit skin, respectively. In dry state, the adhesives exhibit lap shear strengths in the order of hundreds of kPa, with coPLL/HEP and coPLL/CS being about 1.5 times stronger than coPLL/HA. In wet state, all coPECs seal rabbit skin and recover over 60% of the elongation capacity of intact skin with coPLL/HA providing the sturdiest adhesion (∼85% elongation recovery). We demonstrate that this is due to the higher water fraction that improves the bonding between the wet specimens, showcasing the potential superior mechanical recovery on injured tissues. STATEMENT OF SIGNIFICANCE: The development of medical sealants with sufficient adhesive strength in the presence of water and moist remains a huge challenge. We present glycosaminoglycans (GAGs) as biomaterials for the assembly of baroplastics with strong adhesive strength to soft tissues at physiological conditions. Baroplastics with tacky properties were generated by a mild assembly process based on polyelectrolyte complexation and compaction. These materials behave as versatile sealants: their adhesiveness can be adjusted to either dry or wet specimens because of the different sulfation degree of GAGs. These sealants were noncytotoxic towards L929 cells and allowed the damaged skin to recover a great deal of its native elasticity: they preserved the J-shaped stress/strain mechanical response that is typical of biological soft tissues.


Assuntos
Materiais Biomiméticos , Sulfatos de Condroitina , Elasticidade , Ácido Hialurônico , Pele , Adesivos Teciduais , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Coelhos , Pele/lesões , Pele/metabolismo , Pele/patologia , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia
5.
Biomacromolecules ; 19(8): 3401-3411, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29969559

RESUMO

We introduce elastin-like recombinamers (ELRs) as polypeptides with precise amino acid positioning to generate polypeptide coatings with tunable rigidity. Two ELRs are used: V84-ELR, a hydrophobic monoblock, and EI-ELR, an amphiphilic diblock. Both were modified with the amine-reactive tetrakis (hydroxymethyl) phosphonium chloride compound. We evaluated the affinity, conformation, and dissipative behavior of ELRs assembled on alkanethiol self-assembled coatings by quartz crystal microbalance with dissipation monitoring, multiparametric surface plasmon resonance, and atomic force microscopy. The thickness of the polypeptide coatings showcases the preferential affinity of ELRs to NH2- and CH3-terminated surfaces. We demonstrate that V84-ELR strongly bonded to the substrate and reorganizes into an extended and more hydrated layer as the adsorbed amount increases, whereas EI-ELR has a less dissipative behavior. The results suggest that ELR adsorption depends on the amino acid sequence and the substrate chemistry, ultimately influencing the stiffness of the polypeptide coatings.


Assuntos
Elastina/química , Adsorção , Sequência de Aminoácidos , Elastina/genética , Compostos Organofosforados/química , Peptídeos/química , Peptídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
6.
Adv Healthc Mater ; 7(15): e1800124, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797461

RESUMO

Tuberculosis (TB) is an infectious disease which affects millions of people worldwide. Inhalable polymeric dry powders are promising alternatives as anti-TB drug carriers to the alveoli milieu and infected macrophages, with potential to significantly improve the therapeutics efficiency. Here, the development of a magnetically responsive microparticulate system for pulmonary delivery of an anti-TB drug candidate (P3) is reported. Microparticles (MPs) are developed based on a cast method using calcium carbonate sacrificial templates and incorporate superparamagnetic iron oxide nanoparticles to concentrate MPs in alveoli and enable drug on demand release upon actuation of an external alternate magnetic field (AMF). The MPs are shown to be suitable for P3 delivery to the lower airways and for alveolar macrophage phagocytosis. The developed MPs reveal unique and promising features to be used as an inhalable dry powder allowing the AMF control over dosage and frequency of drug delivery anticipating improved TB treatments.


Assuntos
Antituberculosos/análise , Antituberculosos/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Administração por Inalação , Linhagem Celular , Sobrevivência Celular/fisiologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Macrófagos Alveolares/metabolismo , Nanopartículas/química , Fagocitose/fisiologia
7.
Carbohydr Polym ; 174: 849-857, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821140

RESUMO

Cashew gum (CG), an exudate polysaccharide from Anacardium occidentale trees, was carboxymethylated (CGCm) and oxidized (CGO). These derivatives were characterized by FTIR and zeta potential measurements confirming the success of carboxymethylation and oxidation reactions. Nanostructured multilayered films were then produced through layer-by-layer (LbL) assembly in conjugation with chitosan via electrostatic interactions or Schiff bases covalent bonds. The films were analyzed by QCM-D and AFM. CG functionalization increased the film thickness, with the highest thickness being achieved for the lowest oxidation degree. The roughest surface was obtained for the CGO with the highest oxidation degree due to the predominance of covalent Schiff bases. This work shows that nanostructured films can be assembled and stabilized by covalent bonds in alternative to the conventional electrostatic ones. Moreover, the functionalization of CG can increase its feasibility in multilayers films, widening its potential in biomedical, food industry, or environmental applications.

8.
Polymers (Basel) ; 9(9)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30965744

RESUMO

The construction of multilayered films with tunable properties could offer new routes to produce biomaterials as a platform for 3D cell cultivation. In this study, multilayered films produced with five bilayers of chitosan and alginate (CHT/ALG) were built using water-soluble modified mesyl and tosyl⁻CHT via layer-by-layer (LbL) self-assembly. NMR results demonstrated the presences of mesyl (2.83 ppm) and tosyl groups (2.39, 7.37 and 7.70 ppm) in the chemical structure of modified chitosans. The buildup of multilayered films was monitored by quartz-crystal-microbalance (QCM-D) and film thickness was estimated using the Voigt-based viscoelastic model. QCM-D results demonstrated that CHT/ALG films constructed using mesyl or tosyl modifications (mCHT/ALG) were significantly thinner in comparison to the CHT/ALG films constructed with unmodified chitosan (p < 0.05). Adhesion analysis demonstrated that human adipose stem cells (hASCs) did not adhere to the mCHT/ALG multilayered films and formed aggregates with sizes between ca. 100⁻200 µm. In vitro studies on cell metabolic activity and live/dead staining suggested that mCHT/ALG multilayered films are nontoxic toward hACSs. Multilayered films produced via LbL assembly of ALG and off-the-shelf, water-soluble modified chitosans could be used as a scaffold for the 3D aggregates formation of hASCs in vitro.

9.
Biomacromolecules ; 17(6): 2178-88, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27194446

RESUMO

Membranes made of chitosan (CHT) and chondroitin sulfate (CS) are herein presented using a polyelectrolyte complexation sedimentation/evaporation method. The membranes present high roughness and heterogeneous morphology induced by salt crystals. Exposing the membranes to different salt concentrations induces saloplastic behavior, as shown by an increasing water absorption and decreasing stiffness while exposed to increasing concentrations of salt. Establishing contact between two parts of a cut membrane leads to their self-adhesion and maintenance of their stretching ability. The membranes sustain the adhesion of ATDC5 prechondrocyte cells, inducing their rearrangement in cellular aggregates typical of chondrogenesis, and the expression of cartilage markers. Impregnated TGF-ß3 remains loaded after 14 days of incubation, releasing only 1.2% of its total loaded mass. CHT/CS polyelectrolyte membranes are here shown as suitable candidates for the biomedical field, namely, for cartilage regeneration.


Assuntos
Cartilagem/citologia , Quitosana/química , Sulfatos de Condroitina/química , Membranas/química , Polieletrólitos/química , Regeneração , Engenharia Tecidual , Animais , Cartilagem/metabolismo , Diferenciação Celular , Células Cultivadas , Quitosana/metabolismo , Condrogênese , Sulfatos de Condroitina/metabolismo , Humanos , Membranas/metabolismo , Polieletrólitos/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
10.
Biomacromolecules ; 17(4): 1347-57, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26957012

RESUMO

The lack of knowledge on the degradation of layer-by-layer structures is one of the causes hindering its translation to preclinical assays. The enzymatic degradation of chitosan/hyaluronic acid films in the form of ultrathin films, freestanding membranes, and microcapsules was studied resorting to hyaluronidase. The reduction of the thickness of ultrathin films was dependent on the hyaluronidase concentration, leading to thickness and topography variations. Freestanding membranes exhibited accelerated weight loss up to 120 h in the presence of the enzyme, achieving complete degradation. Microcapsules with around 5 µm loaded simultaneously with FITC-BSA and hyaluronidase showed that the coencapsulation of such enzyme and protein mixture led to a FITC-BSA release four times higher than in the absence of hyaluronidase. The results suggest that the degradation of LbL devices may be tuned via embedded enzymes, namely, in the controlled release of active agents in biomedical applications.


Assuntos
Cápsulas/química , Quitosana/metabolismo , Preparações de Ação Retardada/síntese química , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo
11.
Mar Drugs ; 14(2)2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26861358

RESUMO

Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.


Assuntos
Organismos Aquáticos/metabolismo , Sistemas de Liberação de Medicamentos , Polissacarídeos/química , Animais , Química Farmacêutica/métodos , Preparações de Ação Retardada , Portadores de Fármacos/química , Desenho de Fármacos , Técnicas de Transferência de Genes , Humanos , Oceanos e Mares , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Medicina Regenerativa/métodos
12.
Langmuir ; 31(41): 11318-28, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26421873

RESUMO

We investigated the pH-dependent properties of multilayered films made of chitosan (CHI) and alginate (ALG) and focused on their postassembly response to different pH environments using a quartz crystal microbalance with dissipation monitoring (QCM-D), swelling studies, ζ potential measurements, and dynamic mechanical analysis (DMA). In an acidic environment, the multilayers presented lower dissipation values and, consequently, higher moduli when compared with the values obtained for the pH used during the assembly (5.5). When the multilayers were exposed to alkaline environments, the opposite behavior occurred. These results were further corroborated by the ability of this multilayered system to exhibit a reversible swelling-deswelling behavior within the pH range from 3 to 9. The changes in the physicochemical properties of the multilayer system were gradual and different from those of individual solubilized polyelectrolytes. This behavior is related to electrostatic interactions between the ionizable groups combined with hydrogen bonding and hydrophobic interactions. Beyond the pH range of 3-9, the multilayers were stabilized by genipin cross-linking. The multilayered films also became more rigid while the pH responsiveness conferred by the ionizable moieties of the polyelectrolytes was preserved. This work demonstrates the versatility and feasibility of LbL methodology to generate inherently pH stimulus-responsive nanostructured films. Surface functionalization using pH responsiveness endows several biomedical applications with abilities such as drug delivery, diagnostics, microfluidics, biosensing, and biomimetic implantable membranes.


Assuntos
Alginatos/química , Quitosana/química , Eletrólitos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Técnicas de Microbalança de Cristal de Quartzo , Eletricidade Estática
13.
Biotechnol Adv ; 33(6 Pt 3): 1310-26, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25900197

RESUMO

The pharmaceutical industry has been able to tackle the emergence of new microorganisms and diseases by synthesizing new specialized drugs to counter them. Their administration must ensure that a drug is effectively encapsulated and protected until it reaches its target, and that it is released in a controlled way. Herein, the potential of layer-by-layer (LbL) structures to act as drug reservoirs is presented with an emphasis to "nano"-devices of various geometries, from planar coatings to fibers and capsules. The inherent versatile nature of this technique allows producing carriers resorting to distinct classes of materials, variable geometry and customized release profiles that fit within adequate criteria required for disease treatment or for novel applications in the tissue engineering field. The production methods of LbL reservoirs are varied and allow for different kinds of molecules to be incorporated, such as antibiotics, growth factors and biosensing substances, not limited to water-soluble molecules but including hydrophobic drugs. We will also debate the future of LbL in the pharmaceutical industry. Currently, multilayered structures are yet to be covered by the regulatory guidelines that govern the fabrication of nanotechnology products. However, as they stand now, LbL nanodevices have already shown usefulness for antifouling applications, gene therapy, nanovaccines and the formation of de novo tissues.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanotecnologia/métodos , Tecnologia Farmacêutica/métodos , Bioquímica/métodos , Diferenciação Celular/efeitos dos fármacos , Técnicas Eletroquímicas , Técnicas de Transferência de Genes , Humanos , Concentração de Íons de Hidrogênio , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanotecnologia/legislação & jurisprudência , Nanotubos , Concentração Osmolar , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Temperatura
14.
Acta Biomater ; 10(6): 2653-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24561713

RESUMO

Multilayered microcapsules of chitosan and biomimetic elastin-like recombinamers (ELRs) were prepared envisaging the intracellular delivery of active agents. Two ELRs containing either a bioactive RGD sequence or a scrambled non-functional RDG were used to construct two types of functionalized polymeric microcapsules, both of spherical shape ∼4µm in diameter. Cell viability studies with human mesenchymal stem cells (hMSCs) were performed using microcapsule/cell ratios between 5:1 and 100:1. After 3 and 72h of co-incubation, no signs of cytotoxicity were found, but cells incubated with RGD-functionalized microcapsules exhibited higher viability values than RDG cells. The internalization efficacy and bioavailability of encapsulated DQ-ovalbumin were assessed by monitoring the fluorescence changes in the cargo. The data show that surface functionalization did not significantly influence internalization by hMSCs, but the bioavailability of DQ-ovalbumin degraded faster when encapsulated within RGD-functionalized microcapsules. The microcapsules developed show promise for intracellular drug delivery with increased drug efficacy.


Assuntos
Biomimética , Cápsulas , Engenharia Genética , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia
15.
Chem Soc Rev ; 43(10): 3453-79, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24549278

RESUMO

Layer-by-layer (LbL) was first introduced as a surface modification technique based on the sequential spontaneous adsorption of at least two distinct materials onto planar substrates. In the last two decades, this technique has been expanded to the coating of more convoluted geometries with high levels of tailored functionalization or with structural purposes. In this review, the potential uses of LbL films in biomedical engineering based mainly on the assembly of polyelectrolytes are reviewed. Examples of recent developments are provided, from the modification of substrates to improve their biointegration or to add specialized properties, to the three-dimensional extrapolation of this technique to more complex structures for cell seeding, drug delivery devices, biosensors and customizable microreactors. Future strategies and opportunities are compared with current medical and laboratorial methodologies. Through them, it is expected that LbL will contribute greatly to the development of new functional devices with high perspectives of return for the administration of active agents, supports for cells in regenerative medicine and tissue engineering, biosensing and construction of microtissues and disease models in the laboratory.


Assuntos
Engenharia Biomédica , Materiais Revestidos Biocompatíveis , Desenho de Equipamento , Polímeros , Engenharia Biomédica/instrumentação , Engenharia Biomédica/métodos , Técnicas Biossensoriais/instrumentação , Propriedades de Superfície , Engenharia Tecidual/instrumentação
16.
J Phys Chem B ; 117(22): 6839-48, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23662646

RESUMO

Nanostructured films consisting of polysaccharides and elastin-like recombinamers (ELRs) are fabricated in a layer-by-layer manner. A quartz-crystal microbalance with dissipation monitoring (QCM-D) is used to follow the buildup of hybrid films containing one polysaccharide (chitosan or alginate) and one of several ELRs that differ in terms of amino acid content, length, and biofunctionality in situ at pH 4.0 and pH 5.5. The charge density of the ingredients at each pH is determined by measuring their ζ-potential, and the thickness of a total of 36 different films containing five bilayers is estimated using the Voigt-based viscoelastic model. A comparison of the values obtained reveals that thicker films can be obtained when working at a pH close to the acidity constant of the polysaccharide used (near-pKa conditions), suggesting that the construction of such films is more favorable when based on the presence of hydrophobic interactions between ELRs and partially neutralized polysaccharides. Further analysis shows that the molecular weight of the ELRs plays only a minor role in defining the growth tendency. When taken together, these results point to the most favorable conditions for constructing nanostructured films from natural and distinct recombinant polypeptides that can be tuned to exhibit specialized biofunctionality for tissue-engineering, drug-delivery, and biotechnological applications.


Assuntos
Elastina/química , Polissacarídeos/química , Alginatos/química , Sequência de Aminoácidos , Quitosana/química , Elastina/genética , Elastina/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Técnicas de Microbalança de Cristal de Quartzo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
17.
Biomacromolecules ; 14(7): 2403-10, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23692358

RESUMO

Inspired by the cells' structure, we present compartmentalized capsules with temperature and magnetic-based responsiveness and hierarchical organization ranging from the nano- to the visible scales. Liquefied alginate macroscopic beads coated with a layer-by-layer (LbL) chitosan/alginate shell served as containers both for model fluorophores and microcapsules, which in their turn encapsulated either another fluorophore or magnetic nanoparticles (MNPs). The microcapsules were coated with a temperature-responsive chitosan/elastin-like recombinamer (ELR) nanostructured shell. By varying the temperature from 25 to 37 °C, the two-hour release of rhodamine encapsulated within the microcapsules and its diffusion through the external compartment decreased from 84% and 71%. The devices could withstand handling and centrifugal stress, with 50% remaining intact at a rotation speed of 2000g. MNPs attributed magnetic responsiveness toward external magnetic fields. Such a customizable system can be envisaged to transport bioactive agents and cells in tissue engineering applications.


Assuntos
Cápsulas/química , Sistemas de Liberação de Medicamentos/métodos , Rodaminas/metabolismo , Engenharia Tecidual/métodos , Alginatos/química , Quitosana/química , Difusão , Corantes Fluorescentes , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Nanopartículas de Magnetita , Temperatura
18.
Nanomedicine ; 9(7): 895-902, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23453958

RESUMO

Multilayer capsules conceived at the nano- and microscales are receiving increasing interest due to their potential role as carriers of biomolecules for drug delivery and tissue engineering. Herein we report the construction of microcapsules by the sequential adsorption of chitosan and a biomimetic elastin-like recombinamer into nanostructured layers on inorganic microparticle templates. The release profile of bovine serum albumin, which was studied at 25 and 37 °C, shows higher retention and Fickian diffusion at physiological temperature. The self-assembled multilayers act as a barrier and allowed for sustained release over 14 days. The capsules studied are non-cytotoxic towards L929 cells, thereby suggesting multiple applications in the fields of biotechnology and bioengineering, where high control of the delivery of therapeutics and growth/differentiation factors is required. FROM THE CLINICAL EDITOR: In this paper, the construction of microcapsules by sequential adsorption of chitosan and a biomimetic, elastin-like recombinamer into nanostructured layers on inorganic microparticle templates is reported. The layers demonstrated sustained drug release over 14 days. These microcapsules are non-cytotoxic toward L929 cells, suggesting multiple applications where high control of drug or growth factor delivery is required.


Assuntos
Biopolímeros/química , Cápsulas/química , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Proteínas Recombinantes/química , Temperatura , Animais , Carbonato de Cálcio/química , Bovinos , Linhagem Celular , Sobrevivência Celular , Elastina/química , Cinética , Camundongos , Microscopia Confocal , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Soroalbumina Bovina/metabolismo
19.
J Mater Chem B ; 1(18): 2367-2374, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261071

RESUMO

Medical adhesives and sealants often require that long-term adhesiveness is achieved. In this work, nanostructured coatings consisting of chitosan and the adhesive bacterial exopolysaccharide levan are fabricated using layer-by-layer (LbL) assembly. Taking advantage of the electrostatic self-assembly mechanism of LbL, the charges of both chitosan and a phosphonate-derivatized levan (Ph-levan) are measured and the feasibility of constructing hybrid films is monitored and confirmed using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adhesive properties between two identical bonded films with a total of 100 layers are compared to control films in which Ph-levan is replaced by alginate, revealing that the detachment force of the former is about 3 times higher than the control. Scanning electron microscopy of the films surface shows that the surface of Ph-levan films is smooth and homogeneous. Cell adhesion tests were conducted using a L929 cell line. Early cell adhesion is significantly higher in chitosan/Ph-levan films when compared to chitosan/alginate controls. These findings establish levan derivatives as bioinspired ingredients for conceiving medical adhesive devices that allow achieving enhanced mechanical and biological performance.

20.
Small ; 7(18): 2640-9, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21809443

RESUMO

In this work, biomimetic smart thin coatings using chitosan and a recombinant elastin-like recombinamer (ELR) containing the cell attachment sequence arginine-glycine-(aspartic acid) (RGD) are fabricated through a layer-by-layer approach. The synthetic polymer is characterized for its molecular mass and composition using mass spectroscopy and peptide sequencing. The adsorption of each polymeric layer is followed in situ at room temperature and pH 5.5 using a quartz-crystal microbalance with dissipation monitoring, showing that both polymers can be successfully combined to conceive nanostructured, multilayered coatings. The smart properties of the coatings are tested for their wettability by contact angle (CA) measurements as a function of external stimuli, namely temperature, pH, and ionic strength. Wettability transitions are observed from a moderate hydrophobic surface (CAs approximately from 62° to 71°) to an extremely wettable one (CA considered as 0°) as the temperature, pH, and ionic strength are raised above 50 °C, 11, and 1.25 M, respectively. Atomic force microscopy is performed at pH 7.4 and pH 11 to assess the coating topography. In the latter, the results reveal the formation of large and compact structures upon the aggregation of ELRs at the surface, which increase water affinity. Cell adhesion tests are conducted using a SaOs-2 cell line. Enhanced cell adhesion is observed in the coatings, as compared to a coating with a chitosan-ending film and a scrambled arginine-(aspartic acid)-glycine (RDG) biopolymer. The results suggest that such films could be used in the future as smart biomimetic coatings of biomaterials for different biomedical applications, including those in tissue engineering or in controlled delivery systems.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Quitosana/química , Arginina/química , Ácido Aspártico/química , Biomimética , Adesão Celular , Células Cultivadas , Elastina/química , Glicina/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Concentração Osmolar , Quartzo/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...